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United States Bureau of Reclamation

Bureau of Reclamation Regions

* Largest wholesaler of
water in the U.S.

« Second-largest producer
of hydroelectric energy in
the U.S.

Basin |



Reclamation’s Dam Inventory

Dams

A High Hazard Potential

Hydropower Facilities
- Reserved
O Transferred

eat-Plains

D
S

FY 2025 INVENTORY

Total Facilities — 242
High Hazard Dams — 364
Low Hazard Dams — 22

FY 2025 ACTIVITIES

Comprehensive Reviews — 33
Ongoing Issue Evaluations — 52

Corrective Action Studies — 7
(includes 4 in Final Design)

Construction Projects — 5

PROGRAM IMPACTS

$3.2-5.2 billion

Projected value of planned
dam safety improvements
17

Dams being improved by the
Dam Safety Program

9

States benefiting from
improved dams

400 thousand

People safer because of dam
improvements

5 million

Acres of continued irrigation
supply

20+ million

People benefiting from
continued water deliveries




Seismic Risk Across Reclamation’s Portfolio
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Seismic Risk In Taiwan
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Seismic Risk Factors at Reclamation Facilities

« Some Reclamation dams were
constructed using hydraulic fill,

but most of these have been
fixed.

* High seismic risk areas:
» Cascadia Subduction Zone
 San Andreas Fault

* Seismic loading estimates are
increasing with LiDAR and
detailed satellite imagery
finding new faults.




Seismic Failure of Dams

* Definition: Collapse or breach of a dam due to earthquake-induced forces.
» Consequences: Uncontrolled water release usually with little to no warning.

« Common Mechanisms:
* Ground shaking-induced cracking
* Foundation instability
* Liquefaction of embankment materials

Fujinuma Dam Failure 2011
(Photo by M. Yoshizawa)

San Fernandnona__ e
(Source: CA DWR) R




Understanding Seismic Risk

* We have many tools to help us understand our seismic risk:
» Geotechnical Investigations
» Seismic Hazard Analysis

* Numerical Modeling Software
 FLAC2D
* Numerical tools

* Idriss and Boulanger (SPT/CPT-based methods)
 Seed and Idriss simplified procedure




Al/ML Tools to Understand Risk — Case Study

 Case Study 1: Re-Evaluating Idriss and Boulanger (2010)

« Can we recreate this using machine learning?

 Case Study 2: Screen Dam Deformation Using Machine Learning

« Can we screen existing dams or new designs for deformation risk using
predetermined design events?

@



Case Study 1: Re-Evaluating Idriss and

Boulanger (2010)

This paper presents an updated framework for
evaluating the potential for soil liquefaction
using the Standard Penetration Test (SPT). It
refines the stress-based approach by
incorporating an expanded case history
database, re-examining key parameters (like
overburden corrections and magnitude scaling),
and introducing a probabilistic model for
liquefaction triggering.

REI TNO.
UCD/CGM-10/02

CENTER FOR GEOTECHNICAL MODELING

SPT-BASED LIQUEFACTION
TRIGGERING PROCEDURES

BY
I. M. IDRISS
R. W. BOULANGER

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA AT DAVIS

December 2010




Idriss and Boulanger (2010)

Corrected blow count:

- A blow count is a physical test performed in the
field on the soil that results in a measure of how
much resistance the soil can withstand before failing.

- The corrected blow count means the test result was
“corrected” to normalize the value for various factors
such as depth of test, type of testing device used,
etc.

Adjusted cyclic stress ratio (CSR):

- A cyclic stress ratio value is a measure of how much
force will be applied to the soil at different depths
during a seismic event.

- Adjusted CSR means the value was “adjusted” for
factors such as magnitude of earthquake, etc.

Li0q6uefaction case history data (~50% prediction curves, all models)
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Re-evaluating Idriss and Boulanger - Inputs

Two approaches were taken:

1.) Regularization of all potential inputs from Idress and Boulanger.

- All 21 features of a site were used as inputs into the ML models. But
regularization forces the coefficients of the inputs that “matter less” to the
problem to become 0, which means those inputs were essentially ignored in the
ML model creation.

2.) Crowdsourced an answer from the Geotech industry.

- Use only the equivalent CSR and corrected blow count. These are the 2 features
accepted as sufficient to estimate liquefaction by the geotechnical industry.




Re-evaluating Idriss and Boulanger — Model
Selection

* We used three types of models to re-evaluate the data:
» Support Vector Machine (SVM)
* Logistic regression (LR)
* Neural Network (NN)

A
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Re-evaluating Idriss and Boulanger — Model
Assessment

 Model Assessment Metrics
* Error: (FP+FN)/(total) - lower better
 Recall: TP/(TP+FN) — high better
 Receiver Operating Characteristic (ROC) Curve: TP vs FP

* Area under the curve (AUC) - higher better Generic ROC curve
Predicted class
Positive Negative *%
L? Positive e (I?I'(::‘)itives ! nega:ia\::z(FN): %
§ ez FaIse(pFT)s;itivestTrue ?:ls;:\tive: =

0 0.2 0.4 0.6 0.8 1

False positive rate




Using ML to Re-evaluate Idriss and
Boulanger — Results

* Model Assessment:

1. 1&B 2010 model is underperforming most models in all three metrics by a
decent amount.

2. "2 input” models outperforming “all 21" input models in all three metrics.

Error (lower is better):
LR 2 inputs = 8.7%
NN 2 inputs = 8.7%

NN all inputs = 10.9%
|&B 2 inputs = 13.2%
LR all inputs = 17.4%

RecaII (higher is better).

LR 2 inputs = 95.7%
NN 2 inputs =91.3%

NN all inputs = 87%
|&B 2 inputs = 84.4%
LR all inputs = 82.6%

ROC AUC (higher is better):

NN 2 inputs = 98%
LR 2 inputs = 97%

NN all inputs = 97%
|&B 2 inputs = 95%
LR all inputs = 86%




sing ML to Re-evaluate Idriss and
Boulanger — Results

* Next step: Evaluate the ROC curve of all the models
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error=6.5, recall=100.0, & auc=0.98

Final model, LR, 2 features, recall avg for CV data=83.7. For test data:
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Using ML to Re-evaluate Idriss and
Boulanger — Results

* More insight can be gained

comparing the tWO-Component . Liquefaction case history data (~50% prediction curves, all models)
models to the Idriss and Boulanger i .'
equatlon. 05 ".‘ h _____ o 9 .

- Logistic regression and SVM _ S .
models do not produce justifiable 7 ¢ o
results from an engineering L °
perspective. I QO oo
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Mo Liguefaction

logistic regression produced the
best assessment metrics, these
models should still be reviewed by
a subject matter expert (SME).
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Case Study 2: Screen Dam Deformation
Using Machine Learning

* While there are many steps in examining a dam'’s risk of deformation,
one of the major steps is numerical modeling. At Reclamation, this is
usually done using FLAC 2D.

* However, these models can take 20-100+ staff days to complete the
modeling process to identify deformation depending on the state of
the project




Screen Dam Deformation Using Machine
Learning — FLAC2D Background

* FLAC2D (Fast Lagrangian Analysis of Continua in 2D) is a numerical
modeling software based on the finite difference method (FDM).

* Soil strength modeled using Mohr-Coulomb.
« Cannot model 3D effects that could affect stability.
* Predicts seismic-induced deformations (e.g., crest settlement).

Y




Screen Dam Deformation Using Machine
Learning — Model Selection

» We evaluated similar models to the previous case study
but needed continuous outputs. The models evaluated:
* Support Vector Regression (SVR) e TTEET mme
» Ridge/linear regression (Ridge) |
* Neural Network (NN)




Screen Dam Deformation Using Machine Learning —

Parameter

Selection

* Model inputs were based on input files from FLAC2D models with
advice from Reclamation experts

* Including dam geometric and soil strength parameters

« Earthquake parameters

 Target parameter of effective displacement
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Screen Dam Deformation Using Machine Learning —
Input Source

* Inputs came from approximately ~550 FLAC2D models input files
* Only models that used Mohr-Coulomb for soil strength (cannot use new tools
like PM4Sand/PM4Silt)

* Models used were a mixture of dams in their current conditions and proposed
modifications to dams.

* The return period of earthquakes used in the models ranged from the 1,000-
to 100,000-year earthquake.

* Only models deemed to be of “high quality” by Reclamation SMEs were used.

« 20% of the data was saved for testing



Screen Dam Deformation Using Machine

Learning — Results

 Overall model performance
using mean square error:
* NN: 12
* Ridge Regression: 244
* SVR: 219

Predicted Values (ft)
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Screen Dam Deformation Using
Machine Learning — Results

* SVR model generally predicts little
deformation regardless of the
Inputs.

* Regression model produces better
results but has substantial outliers.

* Including impossible crest height
increases

* NN generally provides best results.

Residuals
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Screen Dam Deformation Using Machine
Learning — Discussion

* These results show that we can successfully estimate
effective deformation being produced by FLAC2D model
data.

* NN outperformed the other models in terms of mean
squared error, but this may be due to some outliers
produced by the ridge regression model.

* NN training took about 30 minutes.

 There are some caveats to this work:

* It is a small dataset and due to needing for quality screening it is
difficult to increase the dataset size.

* Only can take inputs from one type of soil model, limiting the
input pool.




Conclusions

* Machine learning models can produce results similar to the
“accepted” solution for liquefaction triggering with
improved performance assessment metrics.

* A neural network was able to produce similar deformation
results to FLAC2D, while requiring just minutes rather than
multiple staff days. It has potential as a screening level
analysis tool.

* Human input is incredibly important in the process;
otherwise, you could end up with results that are not
physically possible.
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Why Full-Hydrograph Forecasting Is Critical

Complete Flood Picture [@ Operational Precision O Risk Mitigation

Captures the entire flood event, Supports accurate decisions Enables proactive risk

from initial rise to final on peak flows, timing, and management, optimizing
recession, providing critical recession characteristics for storage capacity and

timing and magnitude for reservoir releases and coordinating downstream flood

reservoir operations. storage. protection.



The Critical Challenges of Flood Forecasting

# Rainfall-Runoff Challenges

v Catchment heterogeneity

v’ Variable soil moisture conditions
v’ Spatial rainfall uncertainties

v Land use change impacts

¥ Recession Flow Issues

v Non-linear storage-discharge relationships
v Baseflow separation difficulties
v" Groundwater-surface water interaction

These challenges reduce forecasting accuracy, undermining
flood risk management and reservoir operation effectiveness,
especially during extreme events.




Bridging Research and Practical: Experience from
Shihmen Reservoir

Data-Driven and Physically @
Interpretable

v" Extract key flood characteristic from data i i ..
v’ Develop models that combine data-driven @_ Real-Time Data and Visualization
learning with physical interpretability,

: i ) v Automate data processing and forecasting
enhancing decision-makers’ confidence.

workflows.
Human Capacity and Cross- @ v' Provide interactive and visualized

Disciplina ry Expertise outputs to support rapid decision-making

during flood events.
v" Train professionals across hydrology, Hrng .

meteorology, and data science. Innovatlon Driven by Practical
v Introduce Al expertise to build @_ Demands .
sustainable application capacity. v’ Bridge gaps between operational needs

and scientific research.
v’ Stimulate innovation in accuracy, stability,
self-learning, and real-time performance.



Develop a hybrid framework integrating Al and hydrological
methods for robust flood forecasting across the full hydrograph
(rising, peak, and recession).
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Hybrid Modeling Approach:
Integrating Al and Hydrology

This study presents an innovative solution that combines the strengths of two complementary
modeling paradigms: the Al-based RNARX (Rainfall-Runoff Autoregressive with Exogenous Inputs)
model and the traditional hydrological storage function model.

RNARX— Rising & Peak Storage Function — Recession Hybrid Integration — Full Hydrography
Al-driven, effective in rising &  Physically-based, accurate in Seamless switching, robust
peak Periods recession phase across full hydrograph

This hybrid approach overcomes the limitations of each method, delivering robust full-

hydrograph forecasting.



Understanding RNARX: The Al Component

Recurrent Nonlinear Autoregressive with Exogenous Inputs

> Al-driven rainfall-runoff model with a recurrent LT
architecture using exogenous inputs (primarily o
. ) - 1 )
rainfall) B TONNN ey BBy o2 &
» Learns nonlinear dynamics and adapts to Rs(®) 7 N2 @__, Inflow

catchment-specific responses; handles high-
resolution time series.

Rp(t)

> Best during rainfall & peak, capturing rapid rises and — PJ" A ey yj(t+n)
accurate peak flows. P(t+n—1)
Feedback i xi(t)

Input Layer Hidden Layer Output Layer

Note: RNARX’s strength is modeling fast flow changes
driven by rainfall intensity—ideal for peak-flow estimation.



RNARX Performance Characteristics

Strengths Limitations

@ High accuracy during intense rainfall events @ Performance degrades when rainfall approaches zero
@ Captures rapid flow increases effectively @ Predicted flows drop too quickly post-rainfall

@ Reliable peak-flow estimation € Underestimates recession flows

4 Handles complex rainfall-runoff dynamics @ Struggles to sustain accuracy through baseflow periods

RNARX is powerful during rainfall and peak flows, but it reliance on
rainfall input leads to significant errors during the recession phase.



The Storage Function Model: Hydrological Foundation

» Conceptual hydrological model linking streamflow to St =KQe,"
catchment storage s¢ . Water storage depth at time t (mm)
» Captures watershed storage characteristics, reflecting Q. : Effective runoff depth at time t (mmy/hr)
the interaction between surface water and groundwater  K&P : Parameters of the Storage Function
» Fundamental principle: Streamflow discharge rises as
storage increases and gradually declines as storage
depletes. log(q) VS log(s)
» Operational relevance: Widely applied in Japan and
Taiwan for flood forecasting due to its physical
interpretability and simple calibration.

y=0.959x+2.7761
R*=071

log(s)(mm)

A . SEEEHS
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Storage Function Model Performance

Strengths Limitations

@ Excellent performance during the recession phase @ Limited accuracy during the early rising phase

@ Accurately simulates gradual flow decline. @ Tends to overestimate flows under intense rainfall
@ Reflects catchment storage characteristic @ Significant errors in peak flow prediction

@ Physically-based parameter, simple to calibrate @ Cannot capture rapid hydrological changes.

The Storage Function model is ideal for representing recession
flows and storage processes, but it struggles with rapid runoff
dynamics and high intensity rainfall.



Defining the Transition Criteria

Model Switching Logic
RNARX Active When:

v’ Rainfall intensity exceeds threshold
v’ Rising limb or peak flow stage
v’ Rapid flow variations observed

Storage Function Active When:

v’ Rainfall falls below threshold
v’ Recession phase dominates
v’ Baseflow conditions prevail

Rainfall intensity serves as the key trigger for switching, =
ensuring the hybrid model adapts dynamically across
the full hydrograph.




Shihmen Reservoir Watershed

Legend

& Rainfall Gauging Station
E Water Level Gauging Station

— River

Location: Northern Taiwan

Area: 763.4 km?
Effective Storage Capacity: 2.0526 X 1028 m3 (third largest in Taiwan)

Average Annual Rainfall: 2,280 mm (2019~2024)
Maximum Flood Peak: 8,594 cms (2004 Typhoon Aere)



Limitations of Single-Model Approaches

RNARX Model Storage Function

B Performs well int the rising phase (rapid
response to rainfall inputs)

B Excels in the recession phase (capture gradual
flow decline

B Tends to misrepresent flows during the rising

B Tends to underestimate flow during the A
phase and peak flow estimation

recession phase
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Hybrid Model of Full-Hydrograph Forecasting

Integrates RNARX and Storage Function
RNARX active during rainfall and peak flows
Storage Function active during recession phase
Switching criteria based on rainfall intensity and flow stage
Provides accurate prediction of the entire flood hydrograph
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Hybrid Model Performance — Case Example
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Storage Function alone - misrepresents rising
phase and peak

Hybrid Model - accurately captures both rising
and recession phases

Significant improvement in full-hydrograph
prediction
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Consistency of Hybrid Model in Multiple Typhoon Events
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Consistency of Hybrid Model in Multiple Typhoon Events

» 4 typhoon cases: Saola, Nari, Megi, Gaemi

» Hybrid model consistently achieves:

> Lowest RMSE

» Highest R?

» Lowest MAE

» Confirms robustness and general applicability

R-NARX Hybrid Model
RMSE RMSE RMSE

201209 SAOLA 224 0.97 178 625 0.69 235 141 0.98
200116 NARI 281 0.94 199 356 0.91 124 132 0.99 74
201617 MEGI 72 0.82 59 158 0.97 104 126 0.98 64

202403 GAEMI 219 0.98 168 622 0.68 306 68 0.98 39



Operational Implementation Benefits

Extended Lead Time

Reliable forecasts up to
72 hours ahead, giving
operators more time for
proactive planning and
coordination.

@ Precision Operations @ Enhanced Safety

Accurate hydrographs
help optimize releases,
preserve flood storage,
and minimize
unnecessary spills.

Reliable recession
forecasts reduce
premature refilling and
ensure sufficient
capacity for subsequent
storms.



Conclusion

Hybrid RNARX-Storage Function approach integrates strengths
of both models.

Demonstrates consistent improvement in flood forecasting
accuracy across multiple typhoon events.

Provides a practical and reliable framework for full-hydrograph
inflow prediction.

Offers clear operational value for reservoir flood management in

Taiwan and beyond.
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Nowcasting

Al in nowcasting isn’t new —so What's it actually
good at?




Radar-based nowcasting is effective and affordable

J Numerical weather prediction (NWP) Fg;‘a*f;;t
A
J —— Extrapolation
— E$= O3S
VX @ 2131723
hvsical variabl mathematical models long-term
R based on physical constaints forecasts . . . . |
6hr 12hr 18hr Forecast
lead time

1 Radar-based nowcasting
‘ fix) 0 .
0 O 0 > For short forecast lead time,
g ‘ s | # ° radar-based nowcasting methods
S are still more ‘“cost’ effective than

extrapolation short-term
from previous images forecasts NWP.

radar rainfall images



Field-based nowcasting
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- Advection nowcasting

|  Extrapolates current radar rainfall
fields into future frames using
estimated displacements

STEPS current rain field estimated displacements extrapolated rain field

NowcastNet

. Observations pySTEPS
| State-of-the-art nowcasting e
model

=%
.‘. “)..AA

| Optical flow is employed for
displacement estimation

T+1h

| Probabilistic nowcasting model

|  The spatial-temporal scaling
relationship is explicitly modelled.

T+2h

https://pysteps.github.io/




Object-based nowcasting

1 Object-based nowcasting

|  Extrapolates the movement of
identified rainfall cells

O TITAN

|  Most widely-used basis model

2560

TITAN identification LCSs identification

| Storm identification to tohit

I  Temporal association of rainfall objects

between successive time steps O 0

I Widely used for thunderstorm
tracking extrapolation

H identification
nowcasti ng of rain cell of rain cell of rain cell




Challenges in modelling spatial-temporal rainfall
process

« Variations in rainfall = Advection + Evolution (in time)

« The variations in spatial and temporal features of rainfall
are NOT independent from each other

« Preserving consistency across scales

e ——



A joint effort to develop an object-based probabilistic convective
storm nowcasting system

A positional forecasting system based on Enhanced
TITAN + Kalman Ffilter, based on Rossi et al (2016)
Physical-based computation of Kalman Filter
parameters

More informative ensemble Forecasts can be
obtained at short lead time

Thu, 25 Jul 2019 14:55:00 UTC
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Uncertainty estimation for convective cell nowcasting:

A Kalman-filter implementation of enhanced TITAN

Li-Pen Wang*?, Susana Ochoa-Rodriguez?, Yuting Chen?3, Carlos Mufioz Lopez®#, Robert ScovellS, Duncan Wright5,

- Cotege tonsen, U (6] s e e

- We present an application of the Kaiman Filter (KF) [1] to the

1) oot of O Enpmennin, Nsons e sy e (3] RsePhsi e

(1) Why is this important and challenging?

i s is crucial to providi
weather at very short lead tmes.

g warnings of severe

nowcasting of cell centroids based on enhanced TITAN [2).
- Forecasting the movement of convective cells is complex and often - We proposed new physically-based methods for the quantification of
entails significant uncertainty. KF parameters (in contrast to heuristis in [1]).
+ Uncertainty quantification and reduction can improve overall - Evaluation for 20 rainy summer days across the UK. using
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Advection is taken
care of, but what
about rain cell
evolution?

Sun, 04 Jul 2021 16:20:00 UTC
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The mechanism of single-core cell evolution has been studied,
but has not been incorporated into object-based nowcasting

Single-Core Cell e 1N

>1.020 304050 <

» Majorairflow
components

PCO : Precipitation Core

— Developing _, Mature Dlssipating
(5-10 min) (10 15 m|n) (5 10 min)

10 km <-m>
""""""""""""""""""""""" P°°1 3 Spcm
e LH) x;;cy




Our method

UKMO 3D Convert 3D reflectivity Storm Tracking with Single-core cell
reflectivity data to 2D VIL product the Enhanced TITAN lifecycle extraction

ﬁ@zQO_,ﬁTo

3D cell reconstruction

e Reconstruct single-core
rain cell lifespans (in 3D)

e Train, test and validate e
DL-based cell evolution g
FEdiCtion mOdel -based cell evolution . .
p A prediction model for ’ D;:del :onsllructiclant Tralnal:g 2?;?;?(:32:;?;%0“
. . convective cell evolution LSTM Cell A
e Model prediction errors - M ——

2% —
CoPEE )i Tos

~ | .
o0 o 4—?‘7 oo
= ot g o tanh Ly aufin

Uncertainty modelling for
cell evolution prediction
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ict convective cel

Atmospheric Research 304 (2024) 107380

A deep-learning based model to pre
lifecycles

Contents lists available at ScienceDirect

Atmospheric Research

ELSEVIER journal homepage: www.elsevier.com/locate/atmosres .

e The altitude of convective cores found
to be a good indicator of the underlying
cell life stages

Exploring the use of 3D radar measurements in predicting the evolution of
single-core convective cells

Yu-Shen Cheng?, Li-Pen Wang ™", Robert W. Scovell*, Duncan Wright

* National Taiwan University, Taipei, Taiwan
" Imperial College London, London, United Kingdom
© Met Office, Exeter, United Kingdom

Developing
(5-10 min)

Mature
(10-15 min)

= Dissipatipg 4 ABSTRACT
— — (5-10 min)

Object-based radar rainfall noweasting iz a widely used technique for convective storm prediction. Currently, most existing object-based nowcasting methods pri-
‘marily focus on predicting cell movements, neglecting the temporal evolution of cell properties such as size, chape, and intencity. Incorporating this evolution iz
critical for improving predictability in convective storms. While previous studies have used thy (3D) radar to capture vertical changes
O < - > C > during convective cell formation, these cfforts often analyse or specific ive events. ing 3D radar i ion into ional object based
H HIE ) radar rainfall nowcacting remains an open challenge. This research addresses this challenge ucing deep learning (DL) techniques. More specifically, a DL-based

prediction model is developed, which uses 2D and 3D cells’ propertics retrieved from 3D radar reflectivity data at the current time and across the past 15 min to

@m) predict the evolution of these propertics over the next 15 min. This model could eventually be integrated into existing object-based nowcasting models. A total of
4708 cell lifecycles, extracted from high-resolution (5-min, 1-km, 24 levels at 0.5 km intervalz) 3D radar data across the UK, are used to train the model, and a total of
1177 lifecycles are used for testing. The proposed model is chown to predict the evolution of single-core convective cells effectively, including changes in 2D
projected geometry and mean 2D and 3D reflectivity. In particular, by incorporating information on the vertical evolution of convective cores, the prediction errors of
mean reflectivity (in both 2D and 3D) can be reduced by approximately 50% at 15-min forecast lead time, as compared to a persistence forecast. Keywords: radar,

-

0

4050

major airflow

—_—
components

PCO: Precipitation Core

Adopted from Kim et al., 2012

tracking, convective cell, nowcasting, 3D, deep learning, lstm.

1. Introduction

Climate change has reportedly altered global precipitation patterns,
leading, amongst other things, to the intensification of short-duration
rainfall extremes (Trenberth et al., 2003; Lenderink et al., 2017; Liu
et al.. 2009). This has increased the frequency and severity of flood
events worldwide, particularly in urban areas where ongoing urbani-
sation exacerbates both likelihood and impacts (Guhathakurta et al.
2011; Huong and Pathirana, 2013; Willems, 2013; Miller and Hutchins,
2017; Guerreiro et al., 2018; Tabari, 2020; Fowler et al., 2021a, 2021b).

Despite ongoing i in sl flood mil ion (e.g.
improved drainage —both traditional and sustainable- and flood de-
fences) (Zhou et al., 2019; Ghodsi et al., 2020; Hobbie and Grimm, 2020;
Pour et al., 2020), it is virtually impossible —as well as economically and

i i to elimi the hazard (Webber et al.,

Instead, non-structural measures aimed at

successful implementation of said non-structural measures relies greatly
upon good-quality short-term rainfall forecasts, which can be used as
input to optimisation, flood forecasting and warning systems (Hapuar-
achchi et al., 2011; Tingsanchali, 2012).

There are two main sources of short-term rainfall forecasts for use in
such i systems: ‘weather models (NWPs)
and radar-based rainfall nowcasting (Germann and Zawadzki, 2002;
Bowler et al., 2006; Schell~+ =r ~1 9014 Tharmdah] et al.,, 2016;
Casagrande et al., 2017). De > models in the
last 40 years (Bauer et al., 2 eir accuracy at
short lead times (0-5 h) is stil nup’ period-a
period required for a comp stabilise. This
results in relatively low pre hours (Fischer
et al., 2005).

To address this limitatiol

sed nowcasting

models were developed (Dix/ on et al., 1998;
o 1 op 2010




Category of recent Al-based field nowcasting methods

e Explicit separation of advection and evolution prediction (TrajGRU,
NowcastNet)

e Focusing on spatial-temporal feature extraction (DGMR, MetNet)

y



TrajGRU For precipitation
nowcasting

® A classic encoding-forecasting framework

® Motion ‘flow’ is incorporated

Encoder Forecaster

| BN | —>» BN [—>» RNN  [—>» RNN |
A ¥ ¥

| Downsample | | Downsample | | Upsample | | Upsample |
2

| BN > RN [ —>» RNN  [—>» RNN |
v v

| Downsample | | Downsample | | Upsample | | Upsample |
A v ¥

| BNN | —» BNN [—>» RNN  [—>» RNN |

| Convolution | | Convolution | | Convolution I | Convolution |
I b, G Is Iy

H, H> H; Hy
) 4 A A
Xy X X3 Xy

(a) For convolutional RNN, the recurrent
connections are fixed over time.

H, H, H; Hy
o
PR
o
./ [
A A A A
Xy X X3 Xy

(b) For trajectory RNN, the recurrent
connections are dynamically determined.

TrajGRU is flexible and better — ====\WE7:

at capturing complex
spatiotemporal patterns, such
as rotation and scaling

16
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A case of training TrajGRU with CWA 10-min radar data

+0min (true) +30min (true) +60min (true) +90min (true) +120min (true)

&
5
(" . : A _
In early training iterations, the +30min (pred) +60min (pred) +90min (pred)
rainfall field only ‘evolves’ — it .
doesn’t move u
\- 2
(
Advection starts to be learnt at O B -t e Sk el
later iterations &
\- -
o]
)

Al appears to learn
evolution first,
then advection.

. _ =
wf | More detailed field reproduction |

=337

epoch




DGMR: A rainfall nowcasting model trained with the GAN technique

DGMR includes three main models, which are trained simultaneously via an adversarial process.
These models are:

® A Generator that produces rainfall nowcasts.

e Two Discriminators that discriminate if the generated nowcasts are ‘similar enough’ to the ground truth in
terms of their spatial and temporal features, respectively.

YY

Randomly pick > Spatial
8 frames discriminator

Observation T+1 ~ T+18 Observation T-4 ~ T-0
I': (mmmmeem-—-—- ,
: Y 1
T >
R e 3| Random crop +l  Temporal »  Hinge loss
Observation T-4 ~ T-0 > . 71 (128,128) 7| discriminator 4
x18

Prediction T+1 ~ T+18
e
i
L 1

Grid cell
regularization

| Our DGMR replica
e e e e e m i ———— on Github!

A4

Noise from N(0, 1)

https://doi.org/10.1038/s41586-021-03854-z




DGMR generator
Spatial feature
extractor
+
Temporal feature
extractor
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More details can be preserved in the predicted fields while GAN

is used.

DGMR
training without
discriminators

DGMR
training with
discriminators

Ground truth
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DeepMind’s introduction of GANs to rainfall nowcasting was
a catalyst.

Since then, GANs have been widely adopted for Al-based
nowcasting, valued for their ability to produce sharp,
realistic forecasts.
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Climate modelling

Can we teach Al to say ‘Il don’t know’?

22



Climate risk
modelling:

Understanding the

key challenges

and opportunities
in creating climate

transition
pathways

Gap to be filled
L

CATASTROPHE MODELS CLIMATE MODELS TRANSITION RISK MODELS

To measure the impact or financial
loss from physical risks and
catastrophic events.

Historical statistical distributions

that describe physical hazards;

do not explicitly consider future
climate considerations.

Provides probabilities of extreme
event occurrence assuming current
climate conditions.

Only well developed for geographic
areas and hazards where a large
percentage of the population is

insured against that hazard. They are
LIMITATIONS less developed in geographies
with a low amount of insurance
coverage that could be susceptible
to climate change.

To understand the evolution
of the system over different time
scales (past, present and future).

Physical models that represent the
Earth system and help to understand
the evolution of the system
over different time scales (past,
present and future); do not measure
the financial or economic impact
of climate events.

Can produce realistic future
climate conditions.

Struggles to predict many of the
extreme events that most impact
the insurance industry (such as
hurricanes and wildfires). These
events occur on spatial scales that
are too small to be “seen” in most
climate models.

To inform economic risks arising
from the transition to a zero
carbon economy.

Incorporates two different
types of information: climate data
that don’t measure the financial
and economic impacts of climate
events, and economic data that
leverage historical patterns to predict
a future that will look different due to
intensifying climate change impacts.

Portrays plausible scenarios or
pathways to transition the economy
from a predominantly fossil
fuel energy perspective to one
incorporating new types of
fuel sources.

Risk of misinterpreting the output
of the models when making portfolio-
level decisions due to the highly
simplified and backward looking
representation of physical hazard
impacts on the economy.
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analogue - noun

an-a-logue ( 'a-ne-logw) ) - lag

variants or analog
Synonyms of analogue >

1 :something that is similar or comparable to something else either in
general or in some specific detail : something that is analogous to
something else

historical analogues to the current situation




What is Climate/weather analogue method?

e A method of examining today's
Forecast scenario and finding a d= \/(xl — X )+ 01 — ¥z )
day in the past when the A
weather condition looks very [ )
similar.

e Traditionally, the level of
similarity was quantified by
computing the Euclidean
Distance between key
weather variables
determined by the experts.




ClimaDist

* A deep-learning model (CNN) is used to capture weather
dynamics, without the need for labelling.

* Model outputs can be used to create a ‘feature’ to chracterise
weather across a 30-day period, at 6-hour resolution,
accounting for spatial-temporal variability and inter-
dependence.

* Theresulting features are used for analogue identification.

* Ultimately, the analogue model can be applied e.g. for dynamic
rainfall modelling -> finding 30-day rainfall patterns from a
given set of climate variables.

Dataset
e ERA5 1940 - 2009

* Climate variates: Temperature, U and V-component
of wind, geopotential height

prediction
of At

(AtmoDist - Hoffmann and Lessig,2022)

0 20 40 60 80 100 120 140
Epoch

0.94



Example Application — incorporating climate dynamics into
rainfall mOdeIIing 2007/04 indeed an unusual event

April Temperature Distribution
260 .

Apr'2007 was an 25| 1| J ’ Al o il N
abnormally hot and 7507"!."‘“ Weallalalantlofos Wil WMalad el bandlianll|s
dry month '

N
&
o

Temperature (K)
N
o
w
-
C
—Tr
—
— =
. L S——
o ,
. —
| S——
—r
=
——
—
B — |

All Aprils (2003-2008) **
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= 60 * Incorporating climate dynamics
€ 5o ) CDZ,, successfully captures extreme climate
T”’; 40- ‘ i CDf and rainfall behaviour!
€307 1 [ . [, : Z'Zi e Stationary methods, without
_"3 20 I%{ %'% IILI f% % I%T ' considering climate dynamics, cannot
210 ° L5 b predict this type of extreme events —

03 04 05 06 07 08 they are treated as outliers
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Beyond Accuracy:
Teaching Models to Say "l Don't Know"

The Overconfidence Trap

X v

This is a dog I think this is a dog,
Confidently Incorrect but I'm not sure

Solution: Introducing uncertainty
assessment

https://www.ettoday.net/dalemon/post/6299




Explainable Al (XAl) to understand ClimaDist

Temporal view (LRP) Spatial view (SHAP)

* Tells us the decision flow of NN, * SHAP value tells us the importance of each
accounting for seasonality variable at different locations

SHAP value of each variable

temperature u-wind temperture u-wind

35.0% 1 20.0%/ )
—_ 17.5%+ t 595
o 30.0%{
I 15.0%
g 20'0;. 12.5%1 502
2 10.0%
8 15.0%1 7.5% 590
&3 10.0%{ 5.0%.

5.0% 2.5% 587

T F M AmM) JAsoND O T FMAM] JASOND 7 ) .

v-wind geopotential 585
- 582
. Temperature U-wind "
dominates in summer and dominates in winter
is prioritised by the model 57750

- 57500

50°0" 520" 54°0"
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Evidential Deep Learning: Uncertainty Estimation

e A Bayesian-inspired ML approach that does not directly predict class
probabilities but instead predicts a distribution over these probabilities.

e By modelling the output as a Dirichlet distribution, we can separately
quantify two types of uncertainty

o Dempster-Shafer Theory of Evidence: DST u
o Law of Total Variance and Entropy (LoTV):
m Aleatoric (data) uncertainty

m Epistemic (model) uncertainty
‘

y



Exercise: Training ClimaDist model with EDL

Three checkpoints (training targets) are saved from the same model architecture during training
to serve as the basis for subsequent experiments

3 check point 1: »
best validation loss A
0.70 i T“‘ . ™ r8
D ChGCk pOint 2: checl;&o nt2 "’! - L :,,\\ ,‘I\'/. :,: l’,"i‘“',' I‘../l‘”‘h;/ ““\F"H';“r
best validation accuracy 3 wote )y B0 e LAY ) +n:f.:¢c<:,a(, ‘
£ 4 w —e— Validation A y
gy R fa T ] s, 2
° 2 - RY
3 check point 3: g .. “'u""w Vi O

best training performance

H i 050 check point 1
(overFfitting) _'.“‘D L1 Q 2
- Training: Seen data (1960 - 2003) ° * 2 % O e s ©
- validation: Unseen data (2004 - 2008) Epoch
®

e ——



Distribution of Aleatoric (data) Uncertainty

e Overfitted models exhibit high data uncertainty on unseen data
Our EDL model is telling us ‘l haven't seen this data’!

training (seen) data validation (unseen) data

351 check point 3 5]
o overfitting N
%:i ] 251 check point 3
(w)]
B 201 201
@
Y = check point 1 15 .
& . best val loss N check point 1
] check point 3
S ‘ ) check point 2
o check point 2 best val acc N P ‘

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

PY Aleatoric (data) Uncertainty Aleatoric (data) Uncertainty




Spatial-temporal
reconstruction of rainfall

Al's power of learning spatial and temporal features

34



Kriging is a powerful
tool to generate fields
from point data, but...

e |tissensitive to the density and
location of known data points

e The generated fields are of
relatively low temporal
consistency

e The generated fields are
generally smooth, lacking detail

Can Al help us overcome these limitations?

W _

239
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Problem formulation in an Al style

Original -frame 0

F

20

40

60

80

100

120

Nimrod

100

120

60

80

100

120

20

Masked -frame 0

40

60

Masked

80

100

120

GAN

Ul

Discriminator

0| |zoo

)

Reconstruction Model
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W _

PI'OPOSGCI model architecture .iconaaisss scom2d  (E) =rD
O]

is DN or UP =1E
R b,c,t,h,w U-Net backhone: multi-scale feature
\, extraction Fourier decoder: enhances fine details /—\,
b,cxt,h,w
R and temporal coherence Rb.Cthw
- o,
c*t
h/2  cta h/2 , c*t*4 Rb*t,C,h,W
l h
Skip connection only at layer stage
ha g — i — h/a , c*t*8
! g
U-GAN e T T T s Discriminator
*
Input block = a l
Fourier block = [e, f, g, h, h/16, c*t*32 4@—> h/16, c*t*32 GAN Discriminator: guides output
i @ toward realism
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Key model components

s

@

Input Block
- Interpolate coarse-scale field

Gin
T | cat(s[11,s,s [-1])
empora x =(s[t] + s[t+1])/2
M-1DW

IDW, kernel [19, 5], threshold [2,1]
For point with value in surrounding
region 19x19 with at least 2 value

then use IDW. Otherwise 5x5. p=2
Z(P) = —',_EIU:Z(P'.) w; = L
¥ Zw,- dP
=1

Masked -frame 0

' 80
100
120

0 20 40 60 80 100 120

Masked Frame

Restored -frame 0

.ﬂ
0 5 10 15 20 25 30

After Input
Block

i

— vy

0.30
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0.20
015
0.10
0.05
0.00

0.200

0175

0.150

0125

0.100

0.075

0.050

0.025

0.000

®

Fourier Decoder

: Generate spatial detail and

maintain temporal coherence

Lin Calculate_ moments
Mean,Var in 3x3 5x5
Modulation Layernorm2d
Conv 1x1
Batchnorm sigmiod(m)*noise
| |
Conv 3x3 Fourier Transform
RelU Conv Ix1
Conv 3x3 Fourier Transform
| Conv 3x3
—> Residual ~——  Fourier Inverse
L

Original -frame 0

100 120

True Value

i Restored -frame 0

20 -“

40

60 ’

80 *
100
120 Y

] 20 40 60 80 100 120

Model Output

0.35
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Yes, with <1% known data, Al can well reconstruct the
rainfall fields, where:

e More details are preserved
e Observed temporal consistency is maintained
e Less sensitive to gauge density ->|see performance in low density areas

255

Original Radar Known radar data Our model Kriging



' coherence

Extension: How if we replace the known radar data to
real gauge data?

255

Original Radar Known gauge data Our model Kriging 0

With real gauge data, kriging
becomes even less realistic
and displays lower temporal
40




Concluding remarks

e Understanding physical processes is key to best use Al.

e We should take advantage of what (current) Al models are good at —in our
applications:

o Capturing spatial and temporal features

o Fasterin learning rainfall evolution than advection

e While pursuing high model accuracy, it is critical to assess model’s behaviour and
uncertainty

o Explainable Al can help confirm if the model behaviour makes sense.

o EDL helps quantify uncertainty and teaches Al models to indicate ‘I don’'t know'.

W “



Computational Hydrometeorology Lab

Unconventional environmental Modelling climate change

Modelling and nowcasting of
modelling impacts to rainfall at local scales

convective storms

(a) AtmoDist
Representation network Comparison network Input

(Observations)
t15 t-10 t-5 t

Integrated

Output
Nowcasting

(Forecasts)
t+10 t+15

t+5
1. Positional forecaster

7 s 2. Convective cell
evolution predictor
CoCmm .| _.,..;ﬁ...,%
s 3

!

3. Spatially-distributed
rain cell generator

® :Cell centroid feod ‘&&%
() :Positional Uncertainty ‘ metnods

Learn more about
. CompHydroMetLab!

Visit our

Github Li-Pen Wang (lpwang@ntu.edu.tw)
https://wangup.caece.net/
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