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United States Bureau of Reclamation
• Largest wholesaler of 

water in the U.S.
• Second-largest producer 

of hydroelectric energy in 
the U.S.



Reclamation’s Dam Inventory



Seismic Risk Across Reclamation’s Portfolio



Seismic Risk In Taiwan

Source: Lin, Chii-Wen & Liu, Yen-Chiu & Chou, Ping-Shan & Lin, 
Yen-Hui. (2022). ACTIVE FAULT MAP OF TAIWAN, 2021. 



• Some Reclamation dams were 
constructed using hydraulic fill, 
but most of these have been 
fixed.

• High seismic risk areas:
• Cascadia Subduction Zone
• San Andreas Fault

• Seismic loading estimates are 
increasing with LiDAR and 
detailed satellite imagery 
finding new faults.

Seismic Risk Factors at Reclamation Facilities 



Seismic Failure of Dams 

Fujinuma Dam Failure 2011
(Photo by M. Yoshizawa)

• Definition: Collapse or breach of a dam due to earthquake-induced forces.
• Consequences: Uncontrolled water release usually with little to no warning.
• Common Mechanisms:

• Ground shaking–induced cracking
• Foundation instability
• Liquefaction of embankment materials

San Fernando Dam 
(Source: CA DWR )



Understanding Seismic Risk 
• We have many tools to help us understand our seismic risk:

• Geotechnical Investigations
• Seismic Hazard Analysis 
• Numerical Modeling Software

• FLAC2D
• Numerical tools 

• Idriss and Boulanger (SPT/CPT-based methods)
• Seed and Idriss simplified procedure



AI/ML Tools to Understand Risk – Case Study 

• Case Study 1: Re-Evaluating Idriss and Boulanger (2010)
• Can we recreate this using machine learning?

• Case Study 2: Screen Dam Deformation Using Machine Learning 
• Can we screen existing dams or new designs for deformation risk using 

predetermined design events?



Case Study 1: Re-Evaluating Idriss and 
Boulanger (2010) 
This paper presents an updated framework for 
evaluating the potential for soil liquefaction 
using the Standard Penetration Test (SPT). It 
refines the stress-based approach by 
incorporating an expanded case history 
database, re-examining key parameters (like 
overburden corrections and magnitude scaling), 
and introducing a probabilistic model for 
liquefaction triggering. 



Idriss and Boulanger (2010) 
Corrected blow count:
- A blow count is a physical test performed in the 
field on the soil that results in a measure of how 
much resistance the soil can withstand before failing.  
- The corrected blow count means the test result was 
“corrected” to normalize the value for various factors 
such as depth of test, type of testing device used, 
etc.

Adjusted cyclic stress ratio (CSR):
- A cyclic stress ratio value is a measure of how much 
force will be applied to the soil at different depths 
during a seismic event.  
- Adjusted CSR means the value was “adjusted” for 
factors such as magnitude of earthquake, etc.



Two approaches were taken:
   1.) Regularization of all potential inputs from Idress and Boulanger.
   - All 21 features of a site were used as inputs into the ML models. But 
regularization forces the coefficients of the inputs that “matter less” to the 
problem to become 0, which means those inputs were essentially ignored in the 
ML model creation.
   2.) Crowdsourced an answer from the Geotech industry.
   - Use only the equivalent CSR and corrected blow count. These are the 2 features 
accepted as sufficient to estimate liquefaction by the geotechnical industry.

Re-evaluating Idriss and Boulanger - Inputs 



• We used three types of models to re-evaluate the data:
• Support Vector Machine (SVM) 
• Logistic regression (LR)
• Neural Network (NN)

Re-evaluating Idriss and Boulanger – Model 
Selection



• Model Assessment Metrics
• Error: (FP+FN)/(total) - lower better
• Recall: TP/(TP+FN) – high better
• Receiver Operating Characteristic (ROC) Curve: TP vs FP

• Area under the curve (AUC) – higher better

Re-evaluating Idriss and Boulanger – Model 
Assessment 



Using ML to Re-evaluate Idriss and 
Boulanger – Results
• Model Assessment:

1. I&B 2010 model is underperforming most models in all three metrics by a 
decent amount.

2. “2 input” models outperforming “all 21” input models in all three metrics.

Recall (higher is better): 
LR 2 inputs = 95.7%
NN 2 inputs = 91.3%

NN all inputs = 87%
I&B 2 inputs = 84.4%
LR all inputs = 82.6%

Error (lower is better):
LR 2 inputs = 8.7%
NN 2 inputs = 8.7%

NN all inputs = 10.9%
I&B 2 inputs = 13.2%
LR all inputs = 17.4%

ROC AUC (higher is better):
NN 2 inputs = 98%
LR 2 inputs = 97%

NN all inputs = 97%
I&B 2 inputs = 95%
LR all inputs = 86%



Using ML to Re-evaluate Idriss and 
Boulanger – Results
• Next step: Evaluate the ROC curve of all the models

2010 I&B equation

All inputs
2 inputs



Using ML to Re-evaluate Idriss and 
Boulanger – Results 
• More insight can be gained 

comparing the two-component 
models to the Idriss and Boulanger 
equation.

• Logistic regression and SVM 
models do not produce justifiable 
results from an engineering 
perspective.

• Highlights how even though the 
logistic regression produced the 
best assessment metrics, these 
models should still be reviewed by 
a subject matter expert (SME). 



• While there are many steps in examining a dam's risk of deformation, 
one of the major steps is numerical modeling. At Reclamation, this is 
usually done using FLAC 2D.

• However, these models can take 20-100+ staff days to complete the 
modeling process to identify deformation depending on the state of 
the project

Case Study 2: Screen Dam Deformation 
Using Machine Learning 



• FLAC2D (Fast Lagrangian Analysis of Continua in 2D) is a numerical 
modeling software based on the finite difference method (FDM).

• Soil strength modeled using Mohr-Coulomb.
• Cannot model 3D effects that could affect stability.
• Predicts seismic-induced deformations (e.g., crest settlement).

Screen Dam Deformation Using Machine 
Learning – FLAC2D Background



• We evaluated similar models to the previous case study 
but needed continuous outputs. The models evaluated:

• Support Vector Regression (SVR) 
• Ridge/linear regression (Ridge)
• Neural Network (NN)

Screen Dam Deformation Using Machine 
Learning – Model Selection



• Model inputs were based on input files from FLAC2D models with 
advice from Reclamation experts

• Including dam geometric and soil strength parameters
• Earthquake parameters
• Target parameter of effective displacement 

Screen Dam Deformation Using Machine Learning – 
Parameter Selection



• Inputs came from approximately ~550 FLAC2D models input files
• Only models that used Mohr-Coulomb for soil strength (cannot use new tools 

like PM4Sand/PM4Silt)
• Models used were a mixture of dams in their current conditions and proposed 

modifications to dams.
• The return period of earthquakes used in the models ranged from the 1,000- 

to 100,000-year earthquake.
• Only models deemed to be of “high quality” by Reclamation SMEs were used.
• 20% of the data was saved for testing

Screen Dam Deformation Using Machine Learning – 
Input Source



Screen Dam Deformation Using Machine 
Learning – Results
• Overall model performance 

using mean square error:
• NN: 12 
• Ridge Regression: 244
• SVR: 219



Screen Dam Deformation Using 
Machine Learning – Results 
• SVR model generally predicts little 

deformation regardless of the 
inputs.

• Regression model produces better 
results but has substantial outliers.

• Including impossible crest height 
increases

• NN generally provides best results.



Screen Dam Deformation Using Machine 
Learning – Discussion 
• These results show that we can successfully estimate 

effective deformation being produced by FLAC2D model 
data.

• NN outperformed the other models in terms of mean 
squared error, but this may be due to some outliers 
produced by the ridge regression model.

• NN training took about 30 minutes.
• There are some caveats to this work:

• It is a small dataset and due to needing for quality screening it is 
difficult to increase the dataset size.

• Only can take inputs from one type of soil model, limiting the 
input pool.



Conclusions
• Machine learning models can produce results similar to the 

“accepted” solution for liquefaction triggering with 
improved performance assessment metrics.

• A neural network was able to produce similar deformation 
results to FLAC2D, while requiring just minutes rather than 
multiple staff days. It has potential as a screening level 
analysis tool.

• Human input is incredibly important in the process; 
otherwise, you could end up with results that are not 
physically possible.



Thank you!
Cameron Carpenter, ccarpenter@usbr.gov
+1 303-445-3544
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Why Full-Hydrograph Forecasting Is Critical

Captures the entire flood event, 
from initial rise to final 
recession, providing critical 
timing and magnitude for 
reservoir operations.

Supports accurate decisions 
on peak flows, timing, and 
recession characteristics for 
reservoir releases and 
storage.

Enables proactive risk 
management, optimizing 
storage capacity and 
coordinating downstream flood 
protection.



The Critical Challenges of Flood Forecasting

Rainfall-Runoff Challenges
 Catchment heterogeneity
 Variable soil moisture conditions
 Spatial rainfall uncertainties
 Land use change impacts

Recession Flow Issues
 Non-linear storage-discharge relationships
 Baseflow separation difficulties
 Groundwater-surface water interaction

These challenges reduce forecasting accuracy, undermining 
flood risk management and reservoir operation effectiveness, 
especially during extreme events.



Bridging Research and Practical: Experience from 
Shihmen Reservoir 

1Data-Driven and Physically 
Interpretable

 Extract key flood characteristic  from data
 Develop models that combine data-driven 

learning with physical interpretability, 
enhancing decision-makers’ confidence.

2

3Human Capacity and Cross-
Disciplinary Expertise
 Train professionals across hydrology, 

meteorology, and data science.
 Introduce AI expertise to build 

sustainable application capacity. 
4

Real-Time Data and Visualization
 Automate data processing and forecasting 

workflows.
 Provide interactive and visualized 

outputs to support rapid decision-making 
during flood events.

Innovation Driven by Practical 
Demands
 Bridge gaps between operational needs 

and scientific research.
 Stimulate innovation in accuracy, stability, 

self-learning, and real-time performance.



Research Objective

Develop a hybrid framework integrating AI and hydrological 
methods for robust flood forecasting across the full hydrograph 
(rising, peak, and recession).



Theoretical vs. Practical Perspectives on Full-
Hydrograph Forecasting 

Post-Peak StagePre-typhoon stage Pre-peak stage

6

Theoretical flood forecasting 
domain (≈3 days)

Practical need: full-hydrograph domain (≈1 week)

No-rain/ scattered rainfall stage

Gap: time-scale difference



RNARX        Rising & Peak

Hybrid Modeling Approach:
Integrating AI and Hydrology

This study presents an innovative solution that combines the strengths of two complementary 
modeling paradigms: the AI-based RNARX (Rainfall-Runoff Autoregressive with Exogenous Inputs) 
model and the traditional hydrological storage function model.

AI-driven, effective in rising & 
peak Periods

Physically-based, accurate in 
recession phase

Seamless switching, robust 
across full hydrograph

This hybrid approach overcomes the limitations of each method, delivering robust full-

hydrograph forecasting.

Storage Function       Recession Hybrid Integration         Full Hydrography



Understanding RNARX: The AI Component

Recurrent Nonlinear Autoregressive with Exogenous Inputs

 AI-driven rainfall-runoff model with a recurrent 
architecture using exogenous inputs (primarily 
rainfall)

 Learns nonlinear dynamics and adapts to 
catchment-specific responses; handles high-
resolution time series.

 Best during rainfall & peak, capturing rapid rises and 
accurate peak flows.

Note: RNARX’s strength is modeling fast flow changes 
driven by rainfall intensity—ideal for peak-flow estimation.



RNARX Performance Characteristics

 High accuracy during intense rainfall events
 Captures rapid flow increases effectively
 Reliable peak-flow estimation
 Handles complex rainfall-runoff dynamics

 Performance degrades when rainfall approaches zero
 Predicted flows drop too quickly post-rainfall
 Underestimates recession flows
 Struggles to sustain accuracy through baseflow periods

RNARX is powerful during rainfall and peak flows, but it reliance on 
rainfall input leads to significant errors during the recession phase.



The Storage Function Model: Hydrological Foundation

 Conceptual hydrological model linking streamflow to 
catchment storage

 Captures watershed storage characteristics, reflecting 
the interaction between  surface water and groundwater

 Fundamental principle: Streamflow discharge rises as 
storage increases and gradually declines as storage 
depletes.

 Operational relevance: Widely applied in Japan and 
Taiwan for flood forecasting due to its physical 
interpretability and simple calibration.



Storage Function Model Performance

 Excellent performance during the recession phase
 Accurately simulates gradual flow decline.
 Reflects catchment storage characteristic 
 Physically-based parameter, simple to calibrate

 Limited accuracy during the early rising phase
 Tends to overestimate flows under intense rainfall
 Significant errors in peak flow prediction
 Cannot capture rapid hydrological changes.

The Storage Function model is ideal for representing recession 
flows and storage processes, but it struggles with rapid runoff 
dynamics and high intensity rainfall.



Defining the Transition Criteria
Model Switching Logic

 Rainfall intensity exceeds threshold
 Rising limb or peak flow stage
 Rapid flow variations observed

 Rainfall falls below threshold
 Recession phase dominates
 Baseflow conditions prevail

Rainfall intensity serves as the key trigger for switching, 
ensuring the hybrid model adapts dynamically across 
the full hydrograph.



Shihmen Reservoir Watershed

Location: Northern Taiwan
Area: 763.4 km2

Effective Storage Capacity: 2.0526 × 108 m3 (third largest in Taiwan)
Average Annual Rainfall: 2,280 mm (2019~2024)
Maximum Flood Peak: 8,594 cms (2004 Typhoon Aere)



Limitations of Single-Model Approaches

recessionrising
recessionrising

The estimated inflow would be 
inaccuracy in the rising phase

 Performs well int the rising phase (rapid 
response to rainfall inputs)

 Tends to underestimate flow during the 
recession phase

 Excels in the recession phase (capture gradual 
flow decline

 Tends to misrepresent flows during the rising  
phase and peak flow estimation



Hybrid Model of Full-Hydrograph Forecasting
 Integrates RNARX and Storage Function
 RNARX active during rainfall and peak flows
 Storage Function active during recession phase
 Switching criteria based on rainfall intensity and flow stage
 Provides accurate prediction of the entire flood hydrograph

rising recession



Hybrid Model Performance – Case Example

 RNARX alone → underesƟmates recession flows
 Storage Function alone → misrepresents rising 

phase and peak
 Hybrid Model → accurately captures both rising 

and recession phases
 Significant improvement in full-hydrograph 

prediction

recessionrising recessionrising

The estimated inflow would be 
inaccuracy in the rising phase

rising recession



Consistency of Hybrid Model in Multiple Typhoon Events

Hybrid consistently outperforms RNARX and Storage



Consistency of Hybrid Model in Multiple Typhoon Events

Hybrid ModelStorage FunctionR-NARXTyphoon MAER2RMSEMAER2RMSEMAER2RMSE
690.981412350.696251780.97224201209 SAOLA
740.991321240.913561990.94281200116 NARI
640.981261040.97158590.8272201617 MEGI
390.98683060.686221680.98219202403 GAEMI

 4 typhoon cases: Saola, Nari, Megi, Gaemi

 Hybrid model consistently achieves:

 Lowest RMSE

 Highest R²

 Lowest MAE

 Confirms robustness and general applicability



Operational Implementation Benefits

Accurate hydrographs 
help optimize releases, 
preserve flood storage, 
and minimize 
unnecessary spills.

Reliable recession 
forecasts reduce 
premature refilling and 
ensure sufficient 
capacity for subsequent 
storms.

Reliable forecasts up to 
72 hours ahead, giving 
operators more time for 
proactive planning and 
coordination.



Conclusion

 Hybrid RNARX–Storage Function approach integrates strengths 

of both models.

 Demonstrates consistent improvement in flood forecasting 

accuracy across multiple typhoon events.

 Provides a practical and reliable framework for full-hydrograph 

inflow prediction.

 Offers clear operational value for reservoir flood management in 

Taiwan and beyond.
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● AI in nowcasting isn’t new –so What’s it actually good at?

● Can we teach AI to say ‘I don’t know’?

● AI’s power of learning spatial and temporal features
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Nowcasting
AI in nowcasting isn’t new –so What’s it actually 
good at?
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Extrapolation

Synoptic NWP

2~3 hours
For short forecast lead time, 
radar-based nowcasting methods 
are still more ‘cost’ effective than 
NWP.

Mesoscale NWP

Radar-based nowcasting is effective and affordable

❏ Numerical weather prediction (NWP)

❏ Radar-based nowcasting

radar rainfall images extrapolation
from previous images

short-term
forecasts

physical variables mathematical models
based on physical constaints

long-term
forecasts

Target lead time of nowcasting

Forecast 
quality

Forecast
lead time

6hr 12hr 18hr



Field-based nowcasting

❏ Advection nowcasting 
❙ Extrapolates current radar rainfall 

fields into future frames using 
estimated displacements

❏ STEPS 
❙ State-of-the-art nowcasting 

model
❙ Optical flow is employed for 

displacement estimation
❙ Probabilistic nowcasting model
❙ The spatial-temporal scaling 

relationship is explicitly modelled.

https://pysteps.github.io/



Object-based nowcasting

❏ Object-based nowcasting 
❙ Extrapolates the movement of 

identified rainfall cells

❏ TITAN 
❙ Most widely-used basis model

❙ Storm identification 

❙ Temporal association of rainfall objects 
between successive time steps

❙ Widely used for thunderstorm 
nowcasting



Challenges in modelling spatial-temporal rainfall 
process

● Variations in rainfall = Advection + Evolution (in time)

● The variations in spatial and temporal features of rainfall 
are NOT independent from each other

● Preserving consistency across scales



A joint effort to develop an object-based probabilistic convective 
storm nowcasting system

● A positional forecasting system based on Enhanced 
TITAN + Kalman filter, based on Rossi et al (2016)

● Physical-based computation of Kalman filter 
parameters

● More informative ensemble forecasts can be 
obtained at short lead time



Advection is taken 
care of, but what 
about rain cell 
evolution?



The mechanism of single-core cell evolution has been studied, 
but has not been incorporated into object-based nowcasting



Our method

● Reconstruct single-core 
rain cell lifespans (in 3D)

● Train, test and validate 
DL-based cell evolution 
prediction model

● Model prediction errors



● A single LSTM model can well predict the 
evolution of rain cell properties at 
different life stages.

● Nowcasting intensity error (MAE) can be 
reduced by 50% at 15-min lead time.



A deep-learning based model to predict convective cell 
lifecycles

● The altitude of convective cores found 
to be a good indicator of the underlying 
cell life stages

doi:10.1016/j.atmosres.2024.107380

Adopted from Kim et al., 2012



Category of recent AI-based field nowcasting methods

● Explicit separation of advection and evolution prediction (TrajGRU, 
NowcastNet)

● Focusing on spatial-temporal feature extraction (DGMR, MetNet)

● Diffusion models

15



TrajGRU for precipitation 
nowcasting

● A classic encoding-forecasting framework
● Motion ‘flow’ is incorporated

16
https://doi.org/10.48550/arXiv.1706.03458

TrajGRU is flexible and better 
at capturing complex 
spatiotemporal patterns, such 
as rotation and scaling



A case of training TrajGRU with CWA 10-min radar data

AI appears to learn 
evolution first, 
then advection.

17

In early training iterations, the 
rainfall field only ‘evolves’ – it 

doesn’t move

Advection starts to be learnt at 
later iterations

More detailed field reproduction



DGMR: A rainfall nowcasting model trained with the GAN technique

DGMR includes three main models, which are trained simultaneously via an adversarial process. 
These models are:

● A Generator that produces rainfall nowcasts.

● Two Discriminators that discriminate if the generated nowcasts are ‘similar enough’ to the ground truth in 
terms of their spatial and temporal features, respectively.

Our DGMR replica 
on Github!

https://doi.org/10.1038/s41586-021-03854-z



DGMR generator
=

Spatial feature 
extractor 

+ 
Temporal feature 

extractor



More details can be preserved in the predicted fields while GAN 
is used.

+5min +10min +15min +20min +25min +30min

DGMR
training without 
discriminators

DGMR
training with 

discriminators

Ground truth



21

DeepMind’s introduction of GANs to rainfall nowcasting was 
a catalyst.

Since then, GANs have been widely adopted for AI-based 
nowcasting, valued for their ability to produce sharp, 
realistic forecasts. 

Ground truth STEPS UNet MetNet DGMR
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Climate modelling
Can we teach AI to say ‘I don’t know’?
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Climate risk 
modelling:

Understanding the 
key challenges
and opportunities 
in creating climate
transition 
pathways

Gap to be filled



A climate-dependent 
rainfall time series 
modelling

https://www.researchsquare.com/article/rs-
5382842/latest





What is Climate/weather analogue method?

● A method of examining today's 
forecast scenario and finding a 
day in the past when the 
weather condition looks very 
similar. 

● Traditionally, the level of 
similarity was quantified by 
computing the Euclidean 
Distance between key 
weather variables 
determined by the experts.



ClimaDist
• A deep-learning model (CNN) is used to capture weather 

dynamics, without the need for labelling.

• Model outputs can be used to create a ‘feature’ to chracterise
weather across a 30-day period, at 6-hour resolution, 
accounting for spatial-temporal variability and inter-
dependence.

• The resulting features are used for analogue identification.

• Ultimately, the analogue model can be applied e.g. for dynamic 
rainfall modelling -> finding 30-day rainfall patterns from a 
given set of climate variables.

Dataset
• ERA5 1940 – 2009

• Climate variates: Temperature, U and V-component 
of wind, geopotential height

(AtmoDist - Hoffmann and Lessig,2022)​



Example Application – incorporating climate dynamics into 
rainfall modelling

• Incorporating climate dynamics 
successfully captures extreme climate 
and rainfall behaviour!

• Stationary methods, without 
considering climate dynamics, cannot 
predict this type of extreme events –
they are treated as outliers
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Year

All Aprils (2003-2008)

Apr’2007 was an 
abnormally hot and 

dry month 



Beyond Accuracy: 
Teaching Models to Say "I Don't Know"

The Overconfidence Trap

29

This is a dog
Confidently Incorrect

I think this is a dog, 
but I'm not sure

https://www.ettoday.net/dalemon/post/6299

Solution: Introducing uncertainty 
assessment



• Tells us the decision flow of NN, 
accounting for seasonality

Temporal view (LRP) Spatial view (SHAP)

• SHAP value tells us the importance of each 
variable at different locations

Explainable AI (XAI) to understand ClimaDist

Temperature 
dominates in summer and 
is prioritised by the model

U–wind 
dominates in winter
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Evidential Deep Learning: Uncertainty Estimation

● A Bayesian-inspired ML approach that does not directly predict class
probabilities but instead predicts a distribution over these probabilities.

● By modelling the output as a Dirichlet distribution, we can separately 
quantify two types of uncertainty

○ Dempster−Shafer Theory of Evidence: DST 𝑢

○ Law of Total Variance and Entropy (LoTV): 

■ Aleatoric (data) uncertainty 

■ Epistemic (model) uncertainty



Exercise: Training ClimaDist model with EDL

Three checkpoints (training targets) are saved from the same model architecture during training 
to serve as the basis for subsequent experiments

❏ check point 1: 
best validation loss

❏ check point 2:
best validation accuracy

❏ check point 3: 
best training performance 
(overfitting)

➔ Training: Seen data (1960 - 2003)
➔ validation:  Unseen data (2004 - 2008)

32



● Overfitted models exhibit high data uncertainty on unseen data 
● Our EDL model is telling us ‘I haven’t seen this data’!

Distribution of Aleatoric (data) Uncertainty
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check point  1
best val loss

check point  3
overfitting

check point 2 best val acc

check point  1

check point  2

training (seen) data validation (unseen) data

P
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%
)

check point 3

check point 3

Aleatoric (data) Uncertainty Aleatoric (data) Uncertainty
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Spatial-temporal 
reconstruction of rainfall
AI’s power of learning spatial and temporal features
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Kriging is a powerful 
tool to generate fields 
from point data, but…

● It is sensitive to the density and 
location of known data points

● The generated fields are of 
relatively low temporal 
consistency

● The generated fields are 
generally smooth, lacking detail

35Original           Visible           Kriging
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Can AI help us overcome these limitations?



Problem formulation in an AI style

36

Nimrod Reconstruction Model

GAN

Discriminator

Masked



Proposed model architecture
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F

I

All Conv2d is 3*3              is Conv2d = FD                             

is DN or UP = IEI

F

F

F

F

F

U-GAN

Input block = a

Fourier block = [e, f, g, h, 

i]

Discriminator

*a

*
e

*f

*
g

*
h

*i

𝑅𝑏,𝑐,𝑡,ℎ,𝑤

𝑅𝑏,𝑐∗𝑡,ℎ,𝑤
𝑅𝑏,𝑐∗𝑡,ℎ,𝑤

𝑅𝑏∗𝑡,𝑐,ℎ,𝑤h/2  , c*t*4

h/4  , c*t*8

h/16, c*t*32

h/8  , 
c*t*16

h/2  , c*t*4

h/4  , c*t*8

h/16, c*t*32

h/8  , 
c*t*16

h , 
c*t

Skip connection only at layer stage

U-Net backbone: multi-scale feature
extraction Fourier decoder: enhances fine details 

and temporal coherence

GAN Discriminator: guides output 
toward realism



Key model components
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Masked Frame

Model OutputAfter Input 

Block

True Value

1

2 3 4



Yes, with <1% known data, AI can well reconstruct the 
rainfall fields, where:

● More details are preserved
● Observed temporal consistency is maintained
● Less sensitive to gauge density -> see performance in low density areas

39
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Extension: How if we replace the known radar data to 
real gauge data?

40

0

255

Original Radar Known gauge data Our model Kriging

With real gauge data, kriging 
becomes even less realistic 
and displays lower temporal 

coherence



Concluding remarks

● Understanding physical processes is key to best use AI.

● We should take advantage of what (current) AI models are good at – in our 
applications:

○ Capturing spatial and temporal features

○ Faster in learning rainfall evolution than advection

● While pursuing high model accuracy, it is critical to assess model’s behaviour and 
uncertainty

○ Explainable AI can help confirm if the model behaviour makes sense.

○ EDL helps quantify uncertainty and teaches AI models to indicate ‘I don’t know’.
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